

Minutes of Meeting

Technical Session, ICdA office Brussels, Belgium, 6 November 2019, 12:00-16:30

Attendance list

REPRESENTATIVE

ORGANIZATION

MEMBER COMPANY

James M Brown Ltd.

Flaurea Chemicals

IZA (Glencore)

IZA (Nyrstar)

IZA (Teck)

- 1. Howard Winbow
- 2. Patrick de Metz SAFT S.A.
- 3. Ann Vos
- 4. Paul Kolisnyk (by phone)
- 5. Robert Van Quickelberghe
- 6. Günter Halle
- 7. Inge Maes
- Metallo STAFF

1.	Mik Gilles	ICdA
2.	Noömi Lombaert	ICdA
3.	Frank Van Assche	IZA

All participants accepted to comply with the Statement of Compliance as shown on slide #3 of Annex 1

REACH AUTHORISATION

From information received just before the meeting we can now confirm that the New list (10th recommendation list) is explicitly <u>not</u> on the agenda of the MSC-67 meeting (9-11 December) but it is on the next MSC-68 meeting (3-7 February 2020). The timeline will not be affected much because the MSC will immediately take it further and not delay a conclusion to the following MSC-69 meeting in April. The slides presented at the meeting are updated to reflect this change and added in annex to this report.

The 3rd workshop on preparing for authorization, which the REACH consortium intended to organize early January 2020 will now be organized on February 12th 2020.

REVISION OF THE CARCINOGENS AND MUTAGENS DIRECTIVE (CMD)

The amendment includes the option to have a biologic limit value (BLV) in place. The question was raised what such limit implies. In the CMD, it is not specified but under CAD (Chemical Agents Directive), there are a number of actions listed when the BLV is exceeded. Inge Maes informed us that ILA recommends removing workers if the BLV is exceeded. However, it should be added that the existing BLV for Pb in the CAD is considered to be much too high and will likely be lowered.

In EU, many different legislations and regulations exist implementing a wide variety of limit values. Mostly, local occupation doctors follow these national limit values.

The majority of ILA members follow the ILA guidance and its limit value, rather than the higher national limit values.

Concerning the action levels described in the 2018 ICdA Guidance, the attendees agree that the graph taken from the ICdA Guidance (see Annex I, slide 16) is still ok and should not be changed.

EU-OSHA in Bilbao has been given the assignment to assess the value of implementing a BLV in occupation exposure control. In a recent call with Mrs Schneider, we were told that they are interested to see our information on monitoring but that the work hasn't started yet. In order to be efficient, they asked us to wait until the work will start. OSHA will contact us at that time.

THE ICDA CADMIUM OCCUPATIONAL BIO-MONITORING PROGRAM

The results of the OCdBio11 were presented. 38 plants with over 4500 bio-monitored workers participated in 2018.

Paul Kolisnyk asked if information on smoking habits is collected. Such info is not collected, neither on gender or age of individual samples. The information is confidential and collecting this info is only possible if we assure individual privacy. The more detail we ask, the more problematic it becomes to assure this privacy. There is also no link between reported data from urine and from blood samples. So ICdA cannot match these numbers to get a more in depth understanding of interaction between both.

Why is the trend going down? The fact that more "clean" plants are participating could affect this trend. According to Howard, values should be considered less exact when they are high. From experience, he sees that they can fluctuate a lot between two samplings. The low values tend to be much more stable.

It was also mentioned that there are other factors for removal besides high cadmium body burden: heavy smokers, dietary issues, change of work position for other reasons than exposure,...

THE ICDA CADMIUM OCCUPATIONAL AIR-MONITORING PROGRAM

The results of OCdAIR6 were presented. Although each EU member state has an OEL in place, we only received data from 23 plants.

It was discussed what ICdA can do to improve the situation. Patrick suggested to change the look of the data collection template to make it look less complex.

There are still a large proportion of SEGs that are inconclusive. To allow the mathematical calculation of statistical values like a geometric mean, a 90th percentile or the 70% confidence interval of the 95th percentile require a minimum number of samples. In many SEGs, there are not sufficient samples available to do the calculation and hence they become non-conclusive.

Data on OCdAIR1&2 are not included because data quality was too poor to integrate them.

Frank mentioned that not the EN689 criteria (70% confidence interval of the 95th percentile) is used by ECHA but rather the 70, 90 or 95th percentiles, with lower percentiles typically used when there are many data point available. Frank suggested to address the over-conservative approach of EN689 for compliance assessment in an multi-metallic workgroup at Eurometaux level. Steven Verpaele from the Nickel Institute is the absolute expert

in this field. As it is very convenient to copy a procedure that is fully described by a team of experts, there is a real risk that national legislation and regulations will refer to the monitoring standard EN689 when they describe workplace air quality.

ICDA WEBSITE RENEWAL

The renewal has been asked for several years but hasn't materialized yet. The group discussed on what the new website should address.

A suggestion was to look at the new ILA website. The focus should be on positive communication and highlight the unique applications instead of digging in all the details of human and environmental toxicity. Ask the membership for input on a positive story on their application (unique performance of NiCd batteries, enhanced safety and lifetime through corrosion protection, PV panels for renewable energy, pigments for safety and beauty in art, end of life recycling...).

Technical data, like on toxicity, literature, meeting minutes, statistics etc. should be in a member only section.

CADMIUM MARKET INTELLIGENCE

There is indeed a need to update this information. Cadmium market analysis should be developed. Our information on market shares of the different applications dates from 2004 and is likely not accurate anymore. Paul Kolisnyk reported on market intelligence from TECK on increased use of cadmium in alloys and a decline in use for batteries. Geographical moves in the use of cadmium from China to India were reported by Paul. ICdA will make an analysis of the cadmium markets with support from Paul Kolisnyk. ICdA will consult its members on information they have on the markets they are active in and the products they put on the markets. We will also look at the mass-flows that are reported in the REACH dossier. ICdA will act as a trustee to consolidate this information to a level that assures respect for business confidential market information. A webinar will be organized in Q1 2020 to further discuss the work.

Annex I: Slides presented during Technical Session

	Agenda	
11.00	Welcome, Statement of Compliance	
11.05	Update on REACh	
	REACh Authorisation process and workplace limit values	
	Initiative with German experts on workplace limit values	
	C.Canoo and N.Lombaert	
11:15	Amendment to the Carcinogens and Mutagens Directive (CMD)	
	M.Gilles	
11:30	National implementation of the Amendment to the CMD	
	M.Gilles	
12:00	Lunch	
12:30	Reporting on monitoring of Cd in urine and blood: OCdBio-11	
	M.Gilles	
13:00	Reporting on Cd in workplace air monitoring: OCdAir-6	
	M.Gilles	
14:00	ICdA website revamping	
	M.Gilles	
14:25	A.o.b.	
14:30	End of the meeting	
	Technical Session Brussels - 06 11 2019	3

CMD Amendment text												
Annex III is amend	led as follows: in p	oint A, the following rows are added:										
	Limit values											
Name of agent	8 hours (^{III})	Transitional measures										
	mg/m ³ (^V)	1										
Cadmium and its inorganic compounds	0,001 (¹¹)	Limit value 0,004 mg/m3 (¹²) until [eight years after the date of entry into force of this Directive].										
 Measured or ca mg/m3 = millig Inhalable fraction Inhalable fraction Inhalable fraction Cd/g creatinine 	lculated in relation to a grams per cubic <u>metre</u> o on. on. Respirable fraction s Directive, a biomoni in urine.	a reference period of eight <u>hours time</u> -weighted average (TWA). of air at 20 °C and 101,3 kPa (760 mm mercury pressure). in those Member States that implement, on the date of the entry toring system with a biological limit value not exceeding 0,002 m										

 OCdBio - Occupational Cadmium Biomonitoring Observatory
 Since 2008, Cd bio-monitoring data is collected in the Cd industry in order to convince ourselves and authorities on:
 the efficiency of our risk management program
 the compliance of the current exposure levels with the OELs
 It is interesting for ICdA members to compare their own data with aggregated data from the whole Cd using industry
 A meaningful follow-up requires:
 A long-term involvement of the companies; currently 11 year of follow-up!
 A strong coverage of EU industrial sites: in 2018 we received reporting from 4.566 workers on 38 sites!!!

OCdAir-6													
 Personal air sampling at the workplace – Sixth year of data collection – Lower response related to earlier data collection 													
	2013	2014	2015	2016	2017	2018							
Plants	12	22	20	16	25	23							
SEGs	67	142	131	124	162	165							
Workers	994	1548	1369	1278	2249	1857							
 Samplir More All m Corre 	 • Sampling quality improved More samples for each SEG All measures mentioned respirable(16), inhalable(1) or total (6) fraction Correction for Personal Protection Equipment during sampling 												
		Tech	nical Session	Brussels - 06 1	1 2019		40						

		OCdBio11	OCdAir5	OCdAir6	Identified plants	
	Zn smelters w/o Cd refining	100%	100%	83%	6	
	Zn smelters w Cd refining	80%	40%	40%	5	
	Battery manufacturers	100%	86%	86%	7	
	Recyclers	80%	40%	40%	10	
	Others	76%	41%	35%	17	
	Total	84%	56%	51%	45	
> N	o problem of access to data like in bio-m ation: most of these plants haven't	onitoring where d	octors can be relu toring. What co	uctant to share (a ould be the cau	nonymously) the i use?	nformation.
> A in > Su > Lo	monitoring plan that allows a valid statis formation to ICdA seems to be too comp ubcontracting workplace monitoring is m w degree of inspection and enforcemen yma might consider that a faw (low) mag	tical assessment is lex for some. ore expensive tha t by competent au	n bio-monitoring. Ithorities make pl	ants H&S manage	ers think there is n	to need to monit

	Geometric mean														
	- OCd-AIR 2 OCd-AIR 3 OCd-AIR 4 OCd-AIR 5 OCd-AIR 6- Degree of Compliance									ce.					
Geomean	20	14	20	15	20	16	20	17	20	18				ipnan	
Range [µg/m³]	number of SEGs in this range	Number of workers	number of SEGs in this range	Number of workers	number of SEGs in this range	Number of workers	number of SEGs in this range	Number of workers	number of SEGs in this range	Number of workers		87 %	SEGs		
0 to 0,25						463	69	1172	61	901	V 🍾	92% \	vorke	rs	
0 to 1.0	94	1148	38	753	78	1002	133	2014	122	1552		<u>ςς</u> σηη	d com	nlian	~ _
1.1 to 2.0	26	241	10	88	22	167	10	116	13	119		33 600			
2.1 to 3.0	5	35	3	40	6	22	5	29	5	71	co	mpare	ed to 2	2017.	
3.1 to 4.0	8	57	1	9	1	4	2	10	3	19		differ	ence i	s mai	nly in
4.1 to 5.0	3	18					4	31	1	11	1	"	Chicch	5 11101	iiy iii
5.1 to 7.0	2	38	1	29	3	21	2	17	1 /	9	1	non	conci	usive	•
7.1 to 10.0	1	5	1	4	4	33			1		1	(=insuff	icent nu	mber of	samples)
>10.1	3	6					2	4	1		Ь.				
other non-compliant			7	35	1	2			1		BU	n. exce	euan	ces ar	eless
non-conclusive			70	411	12	114	4	28	20	126	th	an in 2	017.		
Total number	142	1548	131	1369	127	1365	162	2249	165	1857]			\backslash	
				1											
Geomean				% of	SEGs in thi	s range		4 💻	Geomea	n			% of worker	s in this range	
Range [µg/m	¹⁸]	2014	2015	20	16	2017	2018	F	ange [µg/	/m³]	2014	2015	2016	2017	2018
< 4		94%	40%	84	% 🤇	93%	87%		< 4		96%	65%	88%	96%	92%
non-conclusiv	e	0%	53%	99	6	2%	12%	r	A <=> 7	sive	0%	30%	8%	1%	7%
7 <=> 10		4%	1%	27	6	4%	1%	_	7 <=> 10)	476	276	2%	2%	0%
> 10		2%	0%	09	6	1%	0%		> 10		0%	0%	0%	0%	0%
other non-compl	iant	0%	5%	19	6	0%	0%	oth	er non-com	npliant	0%	3%	0%	0%	0%
total		100%	100%	100	%	100%	100%		total		100%	100%	100%	100%	100%
	Technical Session Brussels - 06 11 2019 43														

90 percentile															
	- OCd	-AIR 3-	- OCd	-AIR 4-]										
90 percentile	20)15	20	16	20	17	:	2018	De	gree o	f Com	pliance	e:		
Range [µg/m³]	number of SEGs in this range	Number of workers	number of SEGs in this range	Number of workers	number of SEGs in this range	Number of workers	number SEGs in ti range	of his workers	•	60 % S					
0 to 0.25				137	4	427	17	323	1	CE0/					
0 to 1.0	13	267	37	339	63	997	67	812	/ 🥄 /	65% W	orkers	5			
1.1 to 2.0	9	147	19	439	19	331	18	176		~ ~ ~ ~ ~		lioner			
2.1 to 3.0	5	21	16	149	14	291	6	97	Les	Sgood	a comp	Juance	2		
3.1 to 4.0	4	48	7	48	4	53	8	172	cor	npare	d to 20)17.			
4.1 to 5.0	2	8	7	54	5	39	4	23]						
5.1 to 7.0	2	21	3	46	5	17	7	155	Mc	ore exc	eedan	ices th	an		
7.1 to 10.0	2	49	3	19	5	40	6	52	in 🤉	2017 ł	nut les	s ahov	P		
>10.1	6	143	7	48	7	40	2	/ 15	1112	, 2	Junes	5 0000	C		
other non-compliant	5	17					/		10	រg/m³	. \				
non-conclusive	83	648	28	309	40	441	47	405							
Total number	131	1369	127	1451	162	2249	165	1857]						
90 percentile	e % of SEGs in this range						7	90 perce	ntile		% of worker	s in this range			
Range [µg/n	n³]	2015	2016	; ;	2017	2018		Range [ıg∕m³]	2015	2016	2017	2018		
<4 µg Cd/m	3	24%	62%		62%	60%		<4 µg C	d/m³	35%	67%	74%	65%		
non-conclusio	ve	63%	22%		25%	28%		non-cond	lusive	47%	21%	20%	22%		
4 <=> 7		3%	8%		6%	7%		4 <=>	7	2%	7%	2%	10%		
7 <=> 10		2%	2%		3%	4%		7 <=>	10	4%	1%	2%	3%		
> 10		5%	6%	-+	4%	1%	4 🗆	> 10)	10%	3%	2%	1%	Λ	
other non-comp	liant	4%	0%		0%	0%	┥┝	other non-c	ompliant	1%	0%	0%	0%	_	
total		100%	100%	5 1	100%	100%		tota	1	100%	100%	100%	100%		
	Technical Session Brussels - 06 11 2019 44														

EN 689 (70% conf. interval of the 95 percentile)																					
	- OCd	- OCd-AIR 3 OCd-AIR 4 OCd-AIR 5 0						d-AIR 6	j-												
EN689	2015 2016			20	17		2018			Degree of Compliance											
Range [µg/m³]	number of SEGs in this range	Number of workers	number of SEGs in this range	Number of workers	number of SEGs in this range	Number of workers	numbe SEGs in rang	r of this e workers	of		45 % SI	EGs									
0 to 0.25				463	7	158	4	77			160/	orkora									
0 to 1.0			4	28	21	505	24	378		$\langle \rangle$	40% W	orkers									
1.1 to 2.0	3	49	6	235	13	124	17	162	Δ ι	es	s good	compl	iance								
2.1 to 3.0			4	181	13	353	9	124			o Bood	+- 201	101100								
3.1 to 4.0	9	208	21	124	31	459	24	188		201	npareu	10 20.	L/.								
4.1 to 5.0			2	12	6	124	6	104	l [Mo	re exce	edanc	es thai	n in							
5.1 to 7.0			4	83	4	34	3	43	1 2	201											
7.1 to 10.0			3	22	5	41	9	/ 99	1 4	201	L/.	\sim									
>10.1	1	18	6	104	15	92	8	/ 166	1	Mа	ny non	-concl	usive								
other non-compliant	16	190	11	65			5	/ 22	1'	viu		COLLE	usive								
non-conclusive	102	904	66	597	54	517	ø	521	-	=>r	nore sa	amplin	g need	ed!!!							
Total number	131	1369	127	1451	162	2249	165	1857													
EN689			% of SEGs in this range					EN	589			% of workers	s in this range								
Range [µg/n	n³]	2015	2016	5	2017	2018	4 F	Range	[µg/m ¹	3]	2015	2016	2017	2018							
<4 µg Cd/m	3	9%	28%		48%	45%		<4 µg	Cd/m³		19%	39%	64%	46%							
non-conclusi	ve	78%	52%		33%	36%		non-cor	clusive	e	66%	41%	23%	28%							
4 <=> 7		0%	5%		6%	5%		4 <=	> 7		0%	7%	7%	8%							
7 <=> 10		0%	2%		3%	5%		7 <=	> 10		0%	2%	2%	5%							
> 10		1%	5%		9%	5%		> :	10		1%	7%	4%	9%							
other non-comp	bliant	12%	9%		0%	3%		other non-	compli	ant	14%	4%	0%	4%							
total		100%	100%	6	100%	100%		to	al		100%	100%	100%	100%							
· ·					Technica	I Session	Bru	ssels - 06	Cotal 100% <t< td=""></t<>												

